
An Implementation of
Active Objects in Java

By
George Oprean
Matt Pedersen

9/9/08 University of Nevada, Las Vegas 2

Outline

 Introduction
 Active Objects
 Related Work
 Asynchronous Active Objects in Java
 Implementation
 Results
 Conclusions
 Future Work

9/9/08 University of Nevada, Las Vegas 3

Introduction
 Object Oriented paradigm

 widely used in the last two decades
 models how objects interact in the real world

 objects are passive
 friend.borrowMoney(20);
 would reach into friends pocket and get the money

 methods are executed synchronously
 wait until friend gives me the $20

 more than one thread can have a reference to an
object, thus the object can be put in an inconsistent
state

9/9/08 University of Nevada, Las Vegas 4

Each single thread of
control snakes around
objects in the system,
bringing them to life
transiently as their
methods are executed.

Threads cut across object
boundaries leaving
spaghetti-like trails, paying
no regard to the
underlying structure.

Objects Considered Harmful

9/9/08 University of Nevada, Las Vegas 5

Active Objects

 executes method invocations in its own thread
 receives the message, perform the computation

and return the result to the caller
 queues the requests and decide what method to

execute next (order of arrival, priority)
 only one method executes at one time → object

can not be put in an inconsistent state

9/9/08 University of Nevada, Las Vegas 6

 Active Object (2)

 methods can be invoked synchronously or
asynchronously

 asynchronous communication → the uses the
‘waiting time’ for other computations
 waiting time = the time it takes the caller to get the

result back
 preparing breakfast example:

 no cereals? Ask the active object to get the cereals
 meantime, get the milk, set the spoons and pour

orange juice
 got back the cereals? Breakfast is served.

 waitfor statement used for getting the result of
asynchronous calls

9/9/08 University of Nevada, Las Vegas 7

Related Work

 employing patterns
 Active Object or Dynamic Proxy Pattern
 active object and pattern components have to be

implemented

 extending the language with new keywords
 Java – active, accept, select and waitunti l

 only synchronous active objects

 C++ - active, passive
 both synchronous and asynchronous

 using external libraries (like MPI for C)
 ProActive library for Java

9/9/08 University of Nevada, Las Vegas 8

Asynchronous Active Objects in
Java

 implemented our system in Java
 the language is OO
 it has RMI built in
 it supports reflection
 Java compiler available as open-source
 it is platform independent
 autoboxing done implicitly (from JDK 1.5)

9/9/08 University of Nevada, Las Vegas 9

Asynchonous Active Objects in
Java (2)

 an asynchronous Java active object
characteristics:
 must be active (use own thread to execute

the methods)
 can be placed on any reachable machine

on the network (ssh, JRE)
 allow both synchronous and asynchronous

method invocation
 provide a way to obtain the result of

asynchronous call

9/9/08 University of Nevada, Las Vegas 10

New Keywords

 a new active modifier
 marks a class as being active

 an extended object creation
 actObj = new ActiveClass() on “machine_1”;

 an extended method invocation expression
 actObj.foo() async;

 a new blocking waitfor statement
 waitfor actObj var;

9/9/08 University of Nevada, Las Vegas 11

Restrictions on Using the New
Keywords

 asynchronous invocation applies only to the
last method, if method calls are chained
 actObj.foo().bar() async;

 asynchronous invocations can only appear on
the right side of an expression
 illegal: obj.method(actObj.foo() async)

 waiting for the results of asynchronous
invocation on the same object is the same as
the order of invocation

9/9/08 University of Nevada, Las Vegas 12

Implementation
Design Overview

 communication by exchanging messages
 both synchronous and asynchronous

Machine 0

The code only run on this machine
and creates active objects on any
Machine 1 to n

Machine 1

Machine n

Create object

Invoke method

Send the result

Create object

Invoke method

Send the result

9/9/08 University of Nevada, Las Vegas 13

Implementation
Creating an Active Object

 a = new ActiveClass(args) on “server”;

 synchronous communication

{
…….
a = new ActiveClass(arg) on “server”
…….
}

client
ActiveClass

arg

server
ActiveClass
instanceId

CreateMessage

InstanceInfo

client server

Create an instance of ActiveClass

9/9/08 University of Nevada, Las Vegas 14

Implementation
Invoking Active Object’s Methods
 actObj.foo(a,b,c) async;

 without async → synchronous communication

{
…….
actObj.foo(a,b,c) async;
…….
}

InstanceInfo
foo

a,b,c

InvokeMessage

client server

Execute the invocation

return immediately

send the result

9/9/08 University of Nevada, Las Vegas 15

Implementation
Getting the Result of Async Calls
 waitfor actObj var;
 programmer: “I’m waiting for the result of

an asynchronous invocation and I want to
store the value in var.”

 waitfor is a blocking statement
 results of async invocations not waited

for? Will be discarded when the method
finishes

 wait for the result of async calls in the
same method as the invocation

9/9/08 University of Nevada, Las Vegas 16

Implementation
Message Ordering

 active objects can be passed around
 only a reference is passed and not the actual object
 partial ordering: invocations from the same machine on

the same object will be executed in order

…….
actObj.foo() async

…….

client1 client2

The ‘actObj’ resides
on the server and
accepts requests
from any machine
that has a reference
to it.

…….
actObj.foo() async

…….

servercall foo method call foo method

9/9/08 University of Nevada, Las Vegas 17

Implementation
ClientManager and ServerManager

 the core components of our system

client

ClientManager

Remote Object
Stub

server

ServerManager

Remote Object
Skeleton

Resolve the invocation

Network

actObj.foo() async;

9/9/08 University of Nevada, Las Vegas 18

Implementation
ClientManager

 only one per machine
 manages the active invocations from the machine it

is running on
 manages the results of async invocations
 core functionality

 invokeConstructor – creates an active object
 invokeMethod – invokes a method on an active object

 additional functionality
 getMethodId – each method has a unique identifier
 removeUnwaitedCalls – removes unwaited results of

asynchronous invocations

9/9/08 University of Nevada, Las Vegas 19

Implementation
ServerManager

 similar role as ClientManager, but on the machine that
hosts the active objects

 only one per machine
 needs to be started before the program is run (through ssh

script)
 accepts create and invoke messages

Instance_1
foo

a,b,c
Machine_1

InvokeMessage

ServerManager

Instance_1

……..
……..

Instance_n

Active Object

1. message received

2. lookup object

3. Forward the request

9/9/08 University of Nevada, Las Vegas 20

Implementation
Compiler Modifications

 modified Sun’s open-source JDK 1.6
compiler

 new keywords are translated into regular
Java code during desugaring phase

 active keyword is removed from the class
definition

9/9/08 University of Nevada, Las Vegas 21

Implementation
Compiler Modifications (2)

 new creation expression
 ActiveClass actObj = new ActiveClass() on “server”;
will be translated to
 InstanceInfo actObj =

 ClientManager.invokeConstructor(“ActiveClass”,
 new Object[]{}, “server”);

9/9/08 University of Nevada, Las Vegas 22

Implementation
Compiler Modifications(3)

 adding the methodId declaration
 Long methodId = ClientManager.getMethodId();

modifying the async invocations:
 actObj.foo(a) async;

will be translated to:
 ClientManager.invokeMethod(methodId,”foo”,
 new Object[]{a}, true);

9/9/08 University of Nevada, Las Vegas 23

Implementation
Compiler Modifications (4)

 modify the waitfor statement
 waitfor actObj var;
will be translated to
 ReturnObject r0 =

 ClientManager.waitForThread(methodId, actObj);
 var = (Integer) r0.getReturnValue();

 remove the unwaited async calls
 ClientManager.removeUnwaitedCalls(methodId)

9/9/08 University of Nevada, Las Vegas 24

Example: Subscriber / Distributor

public active class Distributor {
 private ArrayList<Subscriber> subscriber();
 public void Subscribe(Subscriber s) {
 subscriber.add(s);
 }
 public void post(String message) {
 for (Subscriber s:subscribers)
 s.post(message) async;
 }
}

public active class Subscriber {
 private String name;
 public Subscriber(String name) {
 this.name = name;
 }
 public void post(String message) {
 System.out.println(name + “ got the message: “ + message);
 }
}

public class Demo {
 public static void main(String argv[]) {
 Distributor d = new Distributor();
 Subscriber a = new Subscriber(“a”);
 d.subscribe(a) async;
 d.post(“First message”):
 Subscriber b = new Subscriber(“b”);
 d.subscribe(b) async;
 d.post(“Second message”);
 Subscriber c = new Subscriber(“c”);
 d.subscribe(c) async;
 d.post(“Third message”);
 }
}

a got the message: First message
b got the message: Second message
b got the message: Third message
c got the message: Third message
a got the message: Second message
a got the message: Third message

9/9/08 University of Nevada, Las Vegas 25

Active Objects for Distributed
Computing

 active objects used for developing parallel
and distributed applications

 async invocations → parallel computation
 create objects on any machine on the

network → distributed computing
 implemented Mandelbrot set computation,

Matrix multiplication and Pipeline
computation

9/9/08 University of Nevada, Las Vegas 26

Results
Mandelbrot Set Computation

 speedup= sequential time / parallel time

9/9/08 University of Nevada, Las Vegas 27

Conclusions

 Object Oriented programming increased
popularity compared to logical or procedural
programming

 objects are passive
 active objects better reflection of the world (both

passive and active objects)
 extended the Java language: active , async , on

and waitfor
 develop parallel and distributed applications
 results demonstrate the feasibility of our proof of

concept

9/9/08 University of Nevada, Las Vegas 28

Future work

 our system can be extended
 starting/stopping the ServerManager from

code
 warning the user if asynchronous calls with

a return value do not have a matching
waitfor

 including an exception mechanism
 receiving out of order invocations
 keep active objects after the application

finished the execution

9/9/08 University of Nevada, Las Vegas 29

 Thank You!

